Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 382(6677): 1384-1389, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38127761

RESUMEN

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Octopodiformes , Regiones Antárticas , Genómica , Agua de Mar , Temperatura , Octopodiformes/genética , Polimorfismo de Nucleótido Simple , Animales
2.
Proc Natl Acad Sci U S A ; 113(25): 6868-73, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274061

RESUMEN

It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate "baseline" variability on glacial-interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations.


Asunto(s)
Cambio Climático , Fitoplancton , Regiones Antárticas , Océanos y Mares
3.
Philos Trans A Math Phys Eng Sci ; 367(1886): 169-87, 2009 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-18852088

RESUMEN

Ice-volume calibrations of the deep-ocean foraminiferal delta18O record imply orbitally influenced sea-level fluctuations of up to 30m amplitude during the Mid-Pliocene, and up to 30 per cent loss of the present-day mass of the East Antarctic Ice Sheet (EAIS) assuming complete deglaciation of the West Antarctic Ice Sheet (WAIS) and Greenland. These sea-level oscillations have driven recurrent transgressions and regressions across the world's continental shelves. Wanganui Basin, New Zealand, contains the most complete shallow-marine Late Neogene stratigraphic record in the form of a continuous cyclostratigraphy representing every 41 and 100ka sea-level cycle since ca 3.6Ma. This paper presents a synthesis of faunally derived palaeobathymetric data for shallow-marine sedimentary cycles corresponding to marine isotope stages M2-100 (ca 3.4-2.4Ma). Our approach estimates the eustatic sea-level contribution to the palaeobathymetry curve by placing constraints on total subsidence and decompacted sediment accumulation. The sea-level estimates are consistent with those from delta18O curves and numerical ice sheet models, and imply a significant sensitivity of the WAIS and the coastal margins of the EAIS to orbital oscillations in insolation during the Mid-Pliocene period of relative global warmth. Sea-level oscillations of 10-30m were paced by obliquity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...